Development of a rapid knee cartilage damage quantification method using magnetic resonance images

نویسندگان

  • Ming Zhang
  • Jeffrey B Driban
  • Lori Lyn Price
  • Daniel Harper
  • Grace H Lo
  • Eric Miller
  • Robert J Ward
  • Timothy E McAlindon
چکیده

BACKGROUND Cartilage morphometry based on magnetic resonance images (MRIs) is an emerging outcome measure for clinical trials among patients with knee osteoarthritis (KOA). However, current methods for cartilage morphometry take many hours per knee and require extensive training on the use of the associated software. In this study we tested the feasibility, reliability, and construct validity of a novel osteoarthritis cartilage damage quantification method (Cartilage Damage Index [CDI]) that utilizes informative locations on knee MRIs. METHODS We selected 102 knee MRIs from the Osteoarthritis Initiative that represented a range of KOA structural severity (Kellgren Lawrence [KL] Grade 0 - 4). We tested the intra- and inter-tester reliability of the CDI and compared the CDI scores against different measures of severity (radiographic joint space narrowing [JSN] grade, KL score, joint space width [JSW]) and static knee alignment, both cross-sectionally and longitudinally. RESULTS Determination of the CDI took on average14.4 minutes (s.d. 2.1) per knee pair (baseline and follow-up of one knee). Repeatability was good (intra- and inter-tester reliability: intraclass correlation coefficient >0.86). The mean CDI scores related to all four measures of osteoarthritis severity (JSN grade, KL score, JSW, and knee alignment; all p values < 0.05). Baseline JSN grade and knee alignment also predicted subsequent 24-month longitudinal change in the CDI (p trends <0.05). During 24 months, knees with worsening in JSN or KL grade (i.e. progressors) had greater change in CDI score. CONCLUSIONS The CDI is a novel knee cartilage quantification method that is rapid, reliable, and has construct validity for assessment of medial tibiofemoral osteoarthritis structural severity and its progression. It has the potential to addresses the barriers inherent to studies requiring assessment of cartilage damage on large numbers of knees, and as a biomarker for knee osteoarthritis progression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of a Rapid Cartilage Damage Quantification Method for the Lateral Tibiofemoral Compartment Using Magnetic Resonance Images: Data from the Osteoarthritis Initiative

The purpose of this study was to expand and validate the cartilage damage index (CDI) to detect cartilage damage in the lateral tibiofemoral compartment. We used an iterative 3-step process to develop and validate the lateral CDI: development (100 knees), testing (80 knees), and validation (100 knees). The validation set included 100 knees from the Osteoarthritis Initiative that was enriched to...

متن کامل

The relationship between T1rho measurements in the meniscus and cartilage in healthy subjects and patients with osteoarthritis

Meniscal damage has been shown to play a central role in the development and progression of osteoarthritis (OA). However, few studies have investigated the interrelationship between cartilage and meniscus using quantitative magnetic resonance imaging (MRI) measurements. The purpose of this study was to investigate the relationship between cartilage and meniscus and to determine which cartilage ...

متن کامل

Steady-state diffusion-weighted imaging of in vivo knee cartilage.

Diffusion-weighted imaging (DWI) has strong potential as a diagnostic for early cartilage damage, with clinical impact for diseases such as osteoarthritis. However, in vivo DWI of cartilage has proven difficult with conventional methods due to the short T2. This work presents a 3D steady-state DWI sequence that is able to image short-T2 species with high SNR. When combined with 2D navigator cor...

متن کامل

Accelerating T1ρ cartilage imaging using compressed sensing with iterative locally adapted support detection and JSENSE.

PURPOSE To accelerate T1ρ quantification in cartilage imaging using combined compressed sensing with iterative locally adaptive support detection and JSENSE. METHODS To reconstruct T1ρ images from accelerated acquisition at different time of spin-lock (TSLs), we propose an approach to combine an advanced compressed sensing (CS) based reconstruction technique, LAISD (locally adaptive iterative...

متن کامل

Bone marrow edema-like lesions and cartilage degeneration in osteoarthritis using 3T MR T1rho quantification: longitudinal assessment

INTRODUCTION Bone marrow edema-like lesions (BMEL) are defined as areas of high signal intensity in T2-weighted, fat-saturated magnetic resonance (MR) images or in short inversion time inversion-recovery images. These lesions are present in knee osteoarthritis (OA) and acute knee injuries. While MR findings of BMEL are common, our knowledge concerning their natural history and significance is l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2014